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ABSTRACT
In this paper we examined the efficiency of one of the methods for numerical inver-
sion of the Laplace transform: the Gaver-Stehfest method to find a solution to a one-
dimensional gas flow model with axial dispersion. The algorithm was used to deter-
mine values of the axial dispersion coefficients DL and Pèclet numbers Pe on the basis 
of the pulse tracer technique. The obtained results of Pèclet numbers indicate that the 
gas flow is neither plug flow nor perfect mixing under operation condition. Numerical 
results are provided to confirm the efficiency of the presented method. Calculations 
were performed with the use of the CAS program type (Maple®).

Keywords: Laplace transform, method for numerical inversion of the Laplace trans-
form, axial dispersion coefficient, program Maple®.

INTRODUCTION

Methods for numerical inversion of the La-
place transform have enjoyed popularity in the 
field of science and engineering since at least the 
1930s. The methods are a very helpful ‘tool of 
mathematics’ to solve problems of mathematics, 
physics, chemistry and engineering which are de-
scribed inter alia by a system of differential equa-
tions. In many cases, an analytical inversion of 
problems to the time domain can be difficult or 
even impossible to obtain. Many scientists used 
numerical algorithms of inverse Laplace trans-
form to find a solution in the time domain of 
transport problems. For example, Chen [2] and 
Zhan et al. [13, 14] have successfully employed 
the Stehfest algorithm to obtain a solution in the 
time domain for the solute transport problems. 
Chen et al. [3] used the Crump method to obtain 
a solution of the radial dispersion in the real-
time domain from the Laplace domain. Kocabas 
[8] presented two algorithms of inverse Laplace 
transform, the Stehfest method and the Dubner 

and Abate method to modeling of tracer transport 
in heterogeneous porous media and estimating 
parameters of systems (e.g Pèclet number). Wang 
and Zhan [11] recommended  the Stehfest meth-
od, the Honig and Hirdes method, and the Zakian 
method for dispersion problems. According to lit-
erature reports, the method based on combination 
of Gaver functionals (the Gaver-Stehfest method) 
have been applied successfully to find solution in 
the time domain of transport problems [7, 9].

In this paper, the efficiency of method for nu-
merical inversion of the Laplace transform based on 
combination of Gaver functionals – the Gaver-Ste-
hfest method for solving an axial dispersion model 
is presented. Axial dispersion coefficients DL and Pè-
clet numbers Pe for measuring system are estimated.

The Gaver-Stehfest method

The Gaver-Stehfest method is a simple algo-
rithm for the numerical inversion of the Laplace 
transform which has been used successfully by 
several authors for many problems  [4, 10, 5]. 
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This method approximates the time domain solution as [15]

(1)

where Vk is described by the following equation

(1a)

The parameter N is called the Stehfest num-
ber N. It is the number of terms used in Eq. (1). 
Parameter N must be an even integer, it should 
be chosen by trial and error method. The preci-
sion of calculation depends on the parameter 
N because the inversion is based on a summa-
tion of N weighted values. Theoretically, the 
large value of parameter N determines a more 
accurate solution but if N is too large, the re-
sults may be worsened due to round-off errors. 
Thus, a suitable choice of value N is impor-
tant to achieve the most accurate solution [6]. 
Many authors propose a different value of the 
parameter N to obtain the most accurate solu-
tion. For example, Cheng and Sidauruk recom-
mended that optimal choice of N should be in 
a range from 6 to 20 [1].

DESCRIPTION OF THE EXPERIMENTS

The main objective of this work is to find a sim-
ple and effective method to find values of coefficients 
(DL or Pe) of axial gas dispersion model. The scheme 
of the measuring system can be seen in Figure 1.

Zone 1: the pipe connected the 6-way valve 
outlet and the 6-way valve inlet; the length of the 
zone: 2.0000•10-2 [m], the diameter of the zone: 
1.5875•10-3 [m].

Zone 2: empty reactor; the length of the 
zone: 1.7700•10-1 [m], the diameter of the zone: 
7.6500•10-3 [m].

Zone 3: the pipe connected a reactor out-
let and the 6-way valve; the length of the zone: 
2.3500•10-1 [m], the diameter of the zone: 
1.5875•10-3 [m].

 
Fig. 1. The schematic representation of the measuring system: 1 – reactor, 2 – the 6-way valve,

 3 – sample loop, 4 – pipe
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Zone 4: the pipe connected the 6-way valve and TCD detector; the length of the zone: 5.5000•10-1 
[m], the diameter of the zone: 1.5875•10-3 [m]

The study was conducted as follows. The system was flushed for 15-30 minutes with a constant 
flow of heliumuntil a stable TCD signal was received. At the same time, the volume of sample loop 
(2.5000·10-7; 5.0000·10-7 [m3]) was flushed also with a constant flow of  nitrogen. Next, the 6-way 
valves were opened to allow the flow of helium with the constant volumetric flow rate (of 3.3333·10-7 or 
5.0000·10-7or 6.6667·10-7 [m3/s]) through the sample loop, all zones to detector TCD. TCD signal was 
recorded. All experiments were conducted at pressure 1.0000·105 [Pa] and temperature 313 [K].

ASSUMPTIONS OF THE MODEL 

The presented model is based on the following assumptions:
 • the system is operated under isothermal conditions and constant pressure, 
 • gases satisfy the equation of the state of an ideal gas.

MASS BALANCE OF THE PROCESS

Mass balance of the nitrogen in each zones can be described by the following a system of partial 
differential equations and the initial and boundary conditions:

Zone 1:

(2)

Zone 2:

(3)

Zone 3:

(4)
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Zone 4:

(5)

c(L1+L2+L3+L4, t) corresponds concentration recorded by TCD-detector. We assumed that DL,1 = DL,3 = 
DL,4 due tu the same diameter of pipes. Inlet concentration can be described by rectangular pulse:

(5a)

where: CT = P/Rg•T•103= 3.906·10-2 [kmol/m3],
 Fv– the volumetric flow rate [m3/s].

RESULTS 

To obtain the outlet concentration of tracer c(L1+L2+L3+L4, t), we solved a system of partial differen-
tial equations Eq. (2-5) with appropriate initial and boundary conditions, by applying Laplace transform 
technique. The solution of model in Laplace domain may be written as

(6)

where:

(6a)

(6b)

where:

(6c)
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(6d)

 s – the Laplace transform parameter.

Solution of Eq. (6) in the time domain was 
obtained using the Gaver-Stehfest method. The 
Gaver-Stehfest algorithm was chosen on the 
basis of previous tests. Accuracy of this algo-
rithm was investigated for test functions and 
simplified model of a real gas flow. Details are 
presented in [12]. Parameter N called ‘parame-
ter of accuracy’ for this method was determined 
by trial and error method. N = 30 was assumed 
as an optimal value for computations. All cal-
culations were carried out with precision up to 
48 decimal digits using Maple®17. Number of 
measurement points is equal to 70. 

The obtained results are presented in Fig-
ures 2 and 3. In all cases, very good fit be-
tween numerical and experiment curves is 

observed. The results showed that the Gaver-
Stehfest method can solve the gas flow prob-
lem with high accuracy (the minimal standard 
deviation is equal to 7.1765·10-4, obtained for 
parameter N=30) and fast (time of calculations 
t=58.4 [s] for N=30). Proper value parameter 
N was determined by trial and error method as 
in [12]. Finally, N=30 was an optimal value of 
parameter N for solution of axial gas disper-
sion model.

In this work, we used a pulse tracer tech-
nique to determine the axial dispersion coef-
ficients of the gas phase and value of Pèclet 
numbers in the zones of system. The nitrogen 
was been used as          a tracer. The inverse 
problem (see Eq. 6) was solved by combina-

 
Fig. 2. Numerical (solid red line) and experimental (blue points) profiles of gas concentration for the volumetric 

flow rate 3.3333·10-7 [m3/s] and the volume of sample loop 2.5000·10-7 [m3]. Screenshot of program Maple®
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Fig. 3. Numerical (solid red line) and experimental (blue points) gas concentration profiles for the volumetric 
flow rate 3.3333·10-7 [m3/s] and the volume of sample loop 5.0000·10-7 [m3]. Screenshot of program Maple®

Table 1. Values of axial dispersion coefficients and Pèclet numbers

Volume of impulse of gas
Vimp [m3]

Volumetric flow rate
Fv [m3/s]

Number of  
zone

Axial dispersion coefficient
DL [m2/s]

Pèclet number 
Pe

2.5000·10-7

3.3333·10-7

1 7.7700·10-4 4.3

2 7.8000·10-5 16.5

3 7.7700·10-4 51.0

4 7.7700·10-4 119.3

5.0000·10-7

1 1.7826·10-3 28.4

2 7.9000·10-5 24.4

3 1.7826·10-3 33.3

4 1.7826·10-3 78.0

6.6667·10-7

1 3.1284·10-3 21.5

2 8.0000·10-5 32.1

3 3.1284·10-3 25.3

4 3.1284·10-3 59.2

tion of ‘trial –and-error’ procedure and inner 
optimization procedure of the program Maple. 
As the correct value of parameter DL was ac-
cepted this, for which the standard deviation 
between numerical and experimental results 
was the lowest.The results are presented in 
Tables 1 and 2.

CONCLUSIONS

The main results of the paper can be summa-
rized as follows:
1. Application of the Gaver-Stehfest method is suit-

able for a solution of one-dimensional gas flow 
model. It works fast and with high accuracy.
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Table 2. Values of axial dispersion coefficients and Pèclet numbers

Volume of impulse of gas
Vimp [m3]

Volumetric flow rate
Fv [m3/s]

Number of  
zone

Axial dispersion coefficient
DL [m2/s]

Pèclet number 
Pe

5.0000·10-7

3.3333·10-7

1 1.2322·10-3 2.7

2 7.8000·10-5 16.5

3 1.2322·10-3 32.1

4 1.2322·10-3 75.2

5.0000·10-7

1 2.6800·10-3 18.9

2 7.9000·10-5 24.4

3 2.6800·10-3 22.2

4 2.6800·10-3 51.9

6.6667·10-7

1 4.9390·10-3 13.6

2 8.0000·10-5 32.1

3 4.9390·10-3 16.0

4 4.9390·10-3 37.5

2. The solution of the presented model fits ex-
perimental results very well.

3. The gas flow is neither plug flow nor perfect 
mixing under operation condition.

4. The Computer Algebra System - Maple® al-
lows the user to transform model equations 
to the Laplace domain, solve resulted set of 
equations and execute inverse Laplace trans-
form just and without errors.

5. CAS – type programs are very helpful for re-
searchers with unusual research or model.
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